Markov chains and semi-Markov models in time-to-event analysis.

نویسندگان

  • Erin L Abner
  • Richard J Charnigo
  • Richard J Kryscio
چکیده

A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting time and place of earthquakes using a Semi-Markov model (with case study in Tehran province)

The paper examines the application of semi-Markov models to the phenomenon of earthquakes in Tehran province. Generally, earthquakes are not independent of each other, and time and place of earthquakes are related to previous earthquakes; moreover, the time between earthquakes affects the pattern of their occurrence; thus, this occurrence can be likened to semi-Markov models. ...

متن کامل

Applying Semi-Markov Models for forecasting the Triple Dimensions of Next Earthquake Occurrences: with Case Study in Iran Area

  In this paper Semi-Markov models are used to forecast the triple dimensions of next earthquake occurrences. Each earthquake can be investigated in three dimensions including temporal, spatial and magnitude. Semi-Markov models can be used for earthquake forecasting in each arbitrary area and each area can be divided into several zones. In Semi-Markov models each zone can be considered as a sta...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Modeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism

In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biometrics & biostatistics

دوره Suppl 1 e001  شماره 

صفحات  -

تاریخ انتشار 2013